
Operating System

Lecture 3 – 2017.3.7

Chapter 3

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Moodle
Contact Moodle Admin

Mr. Amjed Altaweel

amjed.altaweel.88@gmail.com

If you got an old account send your related e-mail (user) to be activated.

If you wont have an account sent your active email address.

In both conditions send your complete Three Name / Dept. / Student Info

Ask for him at the secretary of Com Eng. Dept.

No excuses accepted for inactive accounts

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

OS Linux Review

• Linux History

• Distributions Debian / Ubuntu

• Installation (Single/Dual mode –Virtual Box
– Portable)

• Command line (Terminal)

• $ chmod ug=rw,o-rw,a-x *.txt

U=user (owner) g=group o=other / man / r (recursively)

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Objectives
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Objectives

• To introduce the notion of a process -- a program in execution,
which forms the basis of all computation

• To describe the various features of processes, including
scheduling, creation and termination, and communication

• To explore interprocess communication using shared memory
and message passing

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Process Concept
Process

Is a program in execution (is the unit of work in a modern time-
sharing). A process will need certain resources - such as CPU
time, memory, files, and I/O devices - to accomplish its task.
These resources are allocated to the process either when it is
created or while it is executing. The more complex the operating
system is, the more it is expected to do on behalf of its users.

operating-system processes execute system code,

and

user processes execute user code.

All these processes may execute concurrently.

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Process Concept
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

 An operating system executes a variety of programs:

• Batch system – jobs

• Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost
interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

• The program code, also called text section

• Current activity including program counter, processor registers

• Stack containing temporary data

 Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during run time

Structure of process in memory

Process Concept
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Program is passive entity stored on disk (executable
file), process is active
Program becomes process when executable file loaded into
memory

• Execution of program started via GUI mouse clicks,
command line entry of its name, etc

• One program can be several processes
Consider multiple users executing the same program

Process State
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

P
ro

ce
ss

 S
ta

te
 D

ia
g

ra
m

It is important to

realize that only one

process can be running

on any processor at any

instant. (old OS)

Process Control Block (PCB)
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Information associated with each process

(also called task control block)

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information - priorities, scheduling queue
pointers

• Memory-management information – memory allocated to
the process

• Accounting information – CPU used, clock time elapsed
since start, time limits

• I/O status information – I/O devices allocated to process, list
of open files

PCB Diagram

CPU Switch From Process to Process
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Threads
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

A thread is a basic unit of CPU utilization; it comprises a thread
ID, a program counter, a register set, and a stack. It shares with
other threads belonging to the same process its code section, data
section, and other operating-system resources, such as open files
and signals.

A traditional (or heavyweight) process has a single thread of
control. If a process has multiple threads of control, it can
perform more than one task at a time.

Threads
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

 So far, process has a single thread of execution

Most modern operating systems have extended the process concept to
allow

 Consider having multiple program (multicore systems) counters
per process

• Multiple locations can execute at once

• Multiple threads of control -> threads

 Must then have storage for thread details, multiple program
counters in PCB

 Chapter 4

OS Kernel Assignment
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

A possible clue about assignment sources in source book

e.g:

P.G 110 Abraham source book PROCESS REPRESENTATION IN LINUX

Process Scheduling
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Maximize CPU use, quickly switch processes onto CPU for time
sharing

• Process scheduler selects among available processes for next
execution on CPU

• Maintains scheduling queues of processes

• Job queue – set of all processes in the system

• Ready queue – set of all processes residing in main memory,
ready and waiting to execute

• Device queues – set of processes waiting for an I/O device

• Processes migrate among the various queues

Representation of Process Scheduling
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Queueing diagram rectangular box represents queues (Ready – Device),
resources (circles) , flows

Schedulers
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

 Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds) (must be fast)

 Long-term scheduler (or job scheduler) – selects which processes should be brought
into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes) (may be slow)

• The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations, many short
CPU bursts

• CPU-bound process – spends more time doing computations; few very long CPU
bursts

 Long-term scheduler strives for good process mix

Medium Term Scheduling
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

 Medium-term scheduler can be added if degree of multiple programming

needs to decrease

 Remove process from memory, store on disk, bring back in from disk

to continue execution: swapping (drive out – fill in)

Context Switch
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• When CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no useful work
while switching

 The more complex the OS and the PCB the longer the
context switch

• Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU

multiple contexts loaded at once

Operations on Processes
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

 System must provide mechanisms for:
 process creation,

 process termination,

 and so on as detailed next

Process Creation
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Parent process create children processes, which, in turn create other processes,
forming a tree of processes

• Generally, process identified and managed via a process identifier (pid)

• Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

• Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

A Tree of Processes in Linux

Parent & child Process Facts
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Restricting a child process to a subset of the parent’s resources prevents any
process from overloading the system by creating too many child processes.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two address-space possibilities for the new process:

1. The child process is a duplicate of the parent process (it has the same program
and data as the parent).

2. The child process has a new program loaded into it.

Process Termination
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Process executes last statement and then asks the operating system to
delete it using the exit() system call.

• Returns status data from child to parent (via wait())

• Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting and the operating systems does not allow a child to continue
if its parent terminates

Process Termination
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also be
terminated.

• cascading termination. All children, grandchildren, etc. are terminated.

• The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by using
the wait()system call. The call returns status information and the pid of the
terminated process

• pid = wait(&status);

• If no parent waiting (did not invoke (استحضار) wait()) process is a zombie

• If parent terminated without invoking wait , process is an orphan

Multiprocess Architecture – Chrome Browser
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

Many web browsers ran as single process (some still do)

If one web site causes trouble, entire browser can hang or crash

Google Chrome Browser is multiprocess with 3 different types of
processes:

Browser process manages user interface, disk and network I/O

Renderer process renders web pages, deals with HTML, Javascript. A new renderer
created for each website opened

Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

Plug-in process for each type of plug-in

Interprocess Communication
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

• Processes within a system may be independent or cooperating

• Independent process cannot affect or be affected by the execution of another process

• Cooperating process can affect or be affected by other processes, including sharing
data

• Reasons for cooperating processes:
• Information sharing

• Computation speedup

• Modularity

• Convenience

• Cooperating processes need interprocess communication (IPC)

• Two models of IPC
• Shared memory

• Message passing

Communications Models
O

S
 –

2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

(a) Message passing. (b) shared memory.
Message passing pros:

1- useful for exchanging

smaller amounts of data,

because no conflicts

2- easier to implement in

a distributed system

Alternatively –

there are systems that

provide distributed

shared memory

Shared memory

Pros:

1- Faster

2- no assistance from

the kernel is required

Cons:

suffers from cache

coherency issues

because shared data

migrate among the

several caches

OS Next Lecture

Chapter 4 Threads

O
S

 –
2
0
1
6
/1

7
 –

A
. A

L
T

A
H

E
R

