
Operating System
Lecture 5 /

Chapter 6 (CPU Scheduling)
Basic Concepts

Scheduling Criteria
Scheduling Algorithms

O
S –

2017/18 –
A

. A
LTA

H
ER

OS Process Review

Multicore Programming
Multithreading Models

Thread Libraries
Implicit Threading
Threading Issues

O
S –

2017/18 –
A

. A
LTA

H
ER

Objectives
O

S –
2017/18 –

A
. A

LTA
H

ER

To introduce CPU scheduling, which is the
basis for multi-programmed operating systems.
By switching the CPU among processes, the
operating system can make the computer more
productive. (In fact the kernel-level threads are
being scheduled not the user-level threads)

To describe various CPU-scheduling algorithms

Basic Concepts
O

S –
2017/18 –

A
. A

LTA
H

ER

Maximum CPU utilization obtained with
multiprogramming
CPU–I/O Burst Cycle – Process execution consists
of a cycle of CPU execution and I/O wait
Start CPU burst followed by I/O burst CPU
burst distribution is of main concern

Basic Concepts
O

S –
2017/18 –

A
. A

LTA
H

ER

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of
course, one of the primary computer resources. Thus, its scheduling is
central to operating-system design.

Process execution begins with a CPU burst. That is followed by an I/O
burst, which is followed by another CPU burst, then another I/O burst, and
so on. Eventually, the final CPU burst ends with a system request to
terminate execution.
CPU burst distribution is of main concern
The durations of CPU bursts have been measured extensively. Although they
vary greatly from process to process and from computer to computer, they
tend to have a frequency curve similar.

CPU Scheduler
O

S –
2017/18 –

A
. A

LTA
H

ER

 Short-term scheduler selects from among the processes in ready queue, and
allocates the CPU to one of them
Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state (result of an I/O request)
2. Switches from running to ready state (when an interrupt occurs)
3. Switches from waiting to ready (at completion of I/O)
4. Terminates

 Scheduling under 1 and 4 is non-preemptive (cooperative)
 All other scheduling is preemptive Consider access to shared data
Consider preemption while in kernel mode
Consider interrupts occurring during crucial OS activities

Dispatcher
O

S –
2017/18 –

A
. A

LTA
H

ER

Another component involved in the CPU-scheduling function
 Dispatcher module gives control of the CPU to the process selected by the

short-term scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that

program

The dispatcher should be as fast as possible, since it is invoked during every
process switch.
 Dispatch latency – time it takes for the dispatcher to stop one process and

start another running

Scheduling Criteria
O

S –
2017/18 –

A
. A

LTA
H

ER

CPU utilization– keep the CPU as busy as possible
Throughput – # of processes that complete their execution per time unit
Turnaround time – amount of time to execute a particular process (from
start to complete finishing – sum of waiting to get into memory, waiting in
the ready queue, executing on the CPU, and doing I/O)
Waiting time – amount of time a process has been waiting in the ready queue
(The CPU-scheduling algorithm does not affect the amount of time during
which a process executes or does I/O.)
Response time – amount of time it takes from when a request was submitted
until the first response is produced, not output (for time-sharing
environment)

Scheduling Algorithm Optimization Criteria
O

S –
2017/18 –

A
. A

LTA
H

ER

• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time

First- Come, First-Served (FCFS) Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

Process Burst Time
P1 24
P2 3
P3 3
Suppose that the processes arrive in the order:
P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

• Non-preemptive

process keeps the CPU until it
releases the CPU, either by
terminating or by requesting I/O

Thus: particularly troublesome for
time-sharing systems

FCFS Scheduling (Cont.)
O

S –
2017/18 –

A
. A

LTA
H

ER

Suppose that the processes arrive in the order:
P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect - short process behind long process
 Consider one CPU-bound and many I/O-bound processes

P1

0 3 6 30

P2 P3

There is a convoy effect as all
the other processes wait for the
one big process to get off the
CPU. This effect results in
lower CPU and device
utilization than might be
possible if the
shorter processes were allowed
to go first.

Shortest-Job-First (SJF) Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

• Associate with each process the length of its next CPU burst
• Use these lengths to schedule the process with the shortest

time
• SJF is optimal – gives minimum average waiting time for a

given set of processes
• The difficulty is knowing the length of the next CPU request
• Could ask the user

Example of SJF
O

S –
2017/18 –

A
. A

LTA
H

ER

Processme Burst Time
P1 6
P22.0 8
P34.0 7
P45.0 3

(P1+P2+P3+P4)
Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3

0 3 24

P4 P1

169

P2

Determining Length of Next CPU Burst
O

S –
2017/18 –

A
. A

LTA
H

ER

The real difficulty with the SJF algorithm is knowing the length of
the next CPU request. For long-term (job) scheduling in a batch
system, we can use the process time limit that a user specifies
when he submits the job. In this situation, users are motivated to
estimate the process time limit accurately, since a lower value may
mean faster response but too low a value will cause a time-limit-
exceeded error and require resubmission. SJF scheduling is used
frequently in long-term scheduling.

Determining Length of Next CPU Burst
O

S –
2017/18 –

A
. A

LTA
H

ER

• Can only estimate the length – should be similar to the previous
one
 Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using
exponential averaging

• Commonly, α set to ½
• Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

Example of Shortest-remaining-time-first
O

S –
2017/18 –

A
. A

LTA
H

ER

Now we add the concepts of varying arrival times and preemption to the analysis
ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5
Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P4

0 1 26

P1 P2

10

P3P1

5 17

Priority Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)
• Preemptive
• Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

• Problem ≡ Starvation (indefinite blocking) – low priority processes may
never execute

• Solution ≡ Aging – as time progresses increase the priority of the process

Priority Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

A major problem with priority scheduling algorithms is indefinite blocking,
or starvation. A process that is ready to run but waiting for the CPU can be
considered blocked. A priority scheduling algorithm can leave some low
priority processes waiting indefinitely. In a heavily loaded computer system,
a steady stream of higher-priority processes can prevent a low-priority
process from ever getting the CPU. Generally, one of two things will happen.
Either the process will eventually be run (at 2 A.M. Sunday, when the system
is finally lightly loaded), or the computer system will eventually crash and
lose all unfinished low-priority processes.
(Rumor has it that when they shut down the IBM 7094 at MIT in 1973, they
found a low-priority process that had been submitted in 1967 and had not yet
been run.)
Asolution to the problem of indefinite blockage of low-priority processes is
aging. Aging involves gradually increasing the priority of processes that wait
in the system for a long time.

Example of Priority Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Priority scheduling Gantt Chart

Average waiting time = (6+0+16+18+1)/5 = 8.2 msec

Round Robin (RR)
O

S –
2017/18 –

A
. A

LTA
H

ER

• Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

• q large ⇒ FIFO
• q small ⇒ q must be large with respect to context switch, otherwise

overhead is too high

Example of RR with Time Quantum = 4
O

S –
2017/18 –

A
. A

LTA
H

ER

Process Burst Time
P1 24
P2 3
P3 3

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response
q should be large compared to context switch time
q usually 10ms to 100ms, context switch < 10 usec (micro second)

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Waiting :
(6+4+7)/ 3 = 5.66 msec

Time Quantum and Context Switch Time
O

S –
2017/18 –

A
. A

LTA
H

ER

Multilevel Queue
O

S –
2017/18 –

A
. A

LTA
H

ER

• Ready queue is partitioned into separate queues, eg:
• foreground (interactive)
• background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm:

• foreground – RR
• background – FCFS

• Scheduling must be done between the queues:
• Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
• Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR
• 20% to background in FCFS

Multilevel Queue Scheduling
O

S –
2017/18 –

A
. A

LTA
H

ER

Multilevel Feedback Queue
O

S –
2017/18 –

A
. A

LTA
H

ER

• A process can move between the various queues; aging can be
implemented this way

• Multilevel-feedback-queue scheduler defined by the following
parameters:
• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a process
• method used to determine when to demote a process
• method used to determine which queue a process will enter when that

process needs service

Example of Multilevel Feedback Queue
O

S –
2017/18 –

A
. A

LTA
H

ER

• Three queues:
• Q0 – RR with time quantum 8 milliseconds
• Q1 – RR time quantum 16 milliseconds
• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served FCFS
 When it gains CPU, job receives 8 milliseconds
 If it does not finish in 8 milliseconds, job is moved to queue Q1

• At Q1 job is again served FCFS and receives 16 additional milliseconds
 If it still does not complete, it is preempted and moved to queue Q2

OS Next Lecture

Chapter 5
Process Synchronization

O
S –

2017/18 –
A

. A
LTA

H
ER

	Operating System
	OS Process Review
	Objectives
	Basic Concepts
	Basic Concepts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First- Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Determining Length of Next CPU Burst
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	OS Next Lecture

