
introduction

Database analysis and Database design



 A database is an organized collection of data. It is the

collection of schemas, tables, queries, reports, views, and

other objects. The data are typically organized to model

aspects of reality in a way that supports processes requiring

information, such as modeling the availability of rooms in

hotels in a way that supports finding a hotel with vacancies.





 Modifiability : This means the 
change of the database in 
which some parts are altered 
without increasing the 
complexity 

 Understandability: database 
that is easily understood acts 
like a bridge between the 
problem and its solution. 

 Reliability: the reliability is a 
critical for any data base 
analyses and design.

 Efficiency: the database is 
efficient when it operates 
using available resources 
optimally.

The goal 
of using 
Database
is:



 A database management system (DBMS) is a 

computer software application that interacts with 

the user, other applications, and the database itself 

to capture and analyze data. A general-purpose 

DBMS is designed to allow the definition, creation, 

querying, update, and administration of databases. 

Well-known DBMSs include MySQL, Microsoft SQL 

Server, and Oracle.



Database refers to a set of related data and the way it

is organized. Access to these data is usually provided

by a "database management system" (DBMS)

consisting of an integrated set of computer software

that allows users to interact with one or more databases

and provides access to all of the data contained in the

database (although restrictions may exist that limit

access to particular data). The DBMS provides various

functions that allow entry, storage and retrieval of large

quantities of information and provides ways to manage

how that information is organized.



Database analysis Concerned of establishing the
services that the customer requires from system and
the constraints under which it operates and is
developed. The requirements themselves are the
description of the system services and constraints that
are generated . Data analysis is concerned with the
NATURE and USE of data. It involves the
identification of the data elements which are needed
to support the data processing system of the
organization, the placing of these elements into
logical groups and the definition of the relationships
between the resulting groups.





It is fair to ask why data analysis should be done if it is 
possible, in practice to go straight to a computerized system 
design. Data analysis is time consuming; it throws up a lot 
of questions. Implementation may be slowed down while 
the answers are sought. It is more expedient to have an 
experienced analyst `get on with the job' and come up with 
a design straight away. The main difference is that data 
analysis is more likely to result in a design which meets 
both present and future requirements, being more easily 
adapted to changes in the business or in the computing 
equipment. It can also be argued that it tends to ensure that 
policy questions concerning the organizations' data are 
answered by the managers of the organization, not by the 
systems analysts. Data analysis may be thought of as the 
`slow and careful' approach, whereas omitting this step is 
`quick and dirty'. 





In data analysis we analyze the data and 
build system representation in the form 

of a data model (conceptual). A 
conceptual data model specifies the 

structure of the data and the processes 
which use that data.

Data Analysis = establishing the nature of 
data. 

Functional Analysis = establishing the 
use of data. 





 Database study - here the designer creates a written 
specification in words for the database system to be 
built. This involves: 
 analyzing the company situation - is it an expanding company, 

dynamic in its requirements, mature in nature, solid 
background in employee training for new internal products, 
etc. These have an impact on how the specification is to be 
viewed. 

 Define problems and constraints - what is the situation 
currently? How does the company deal with the task which the 
new database is to perform? Any issues around the current 
method? What are the limits of the new system? 

 Define objectives - what is the new database system going to 
have to do, and in what way must it be done. What information 
does the company want to store specifically, and what does it 
want to calculate. How will the data evolve? 

 Define scope and boundaries - what is stored on this new 
database system, and what it stored elsewhere. Will it interface 
to another database? .



 Database Design - conceptual, logical, and 
physical design steps in taking specifications to 
physical implementable designs. This is looked 
at more closely in a moment. 

 Implementation and loading - it is quite 
possible that the database is to run on a 
machine which as yet does not have a database 
management system running on it at the 
moment. If this is the case one must be 
installed on that machine. Once a DBMS has 
been installed, the database itself must be 
created within the DBMS. Finally, not all 
databases start completely empty, and thus 
must be loaded with the initial data set .



• Testing and evaluation - the database, once implemented, must be 
tested against the specification supplied by the client. It is also 
useful to test the database with the client using mock data, as 
clients do not always have a full understanding of what they thing 
they have specified and how it differs from what they have actually 
asked for! In addition, this step in the life cycle offers the chance to 
the designer to fine-tune the system for best performance. Finally, it 
is a good idea to evaluate the database in-situ, along with any 
linked applications. 

• Operation - this step is where the database is actually in real usage 
by the company. 

• Maintenance and evolution - designers rarely get everything 
perfect first time, and it may be the case that the company requests 
changes to fix problems with the system or to recommend 
enhancements or new requirements. 



The requirements of the database are the 
descriptions of the services provided by the database 
and its operational constrains, this requirement 
reflects the need of costumers for the system that 
helps solve some problems. We can distinguish 
between two levels of requirements process:

1. User requirements: these are statements in natural 
language plus diagrams of what services the system is 
expected to provide and constraints under with it must 
operate.

2. System requirements: these are the set out the 
system’s functions, services and operational 
constraints in detail. 



The specification is usually in the form of written

document containing customer requirements, mock

reports, screen drawings and the like, written by the

client to indicate the requirements which the final

system is to have. Often such data has to be collected

together from a variety of internal sources to the

company and then analyzed to see if the requirements

are necessary, correct, and efficient.



Once the Database requirements have been 
collated, the Conceptual Design phase takes the 
requirements and produces a high-level data 
model of the database structure. In this module, 
we use ER modeling to represent high-level data 
models, but there are other techniques. This 
model is independent of the final DBMS which 
the database will be installed in.



Next, the Conceptual Design phase takes the 
high-level data model it taken and converted into 
a conceptual schema, which is specific to a 
particular DBMS class (e.g. relational). For a 
relational system, such as Oracle, an appropriate 
conceptual schema would be relations. 

Finally, in the Physical Design phase the 
conceptual schema is converted into database 
internal structures. This is specific to a particular 
DBMS product. 



1. User requirements : often
referred to as user needs,
describe what the user does
with the system, such as what
activities that users must be
able to perform. User
requirements are generally
documented in a User
Requirements Document
(URD) using narrative text.
User requirements are
generally signed off by the user
and used as the primary input
for creating system
requirements.

2. System requirements : are the
building blocks developers use
to build the system. These are
the traditional “shall”
statements that describe what
the system “shall do.” System
requirements are classified as
either functional or
supplemental requirements.







 The library system
 A library system that provides a single interface to 

a number of databases of articles in different 
libraries.

 User can search for download and print these 
articles for personal study.

 The user shall be able to search either all of the 
initial set of database or select a subset from it.

 The system shall provide appropriate viewers for 
the user to read document in the document store.

 Every order shall be allocated a unique identifier 
(ORDER-ID) which the user should be able to copy 
to the account’s permanent area.



 Problems arise when requirements are not precisely stated.
 Ambiguous requirements may be interpreted in different ways by 

developers and users.
 Consider the terms ‘ appropriate viewers
 1. User intention – special purpose viewer for each different document 

type.
 2. Developer interpretation – provide a text viewer that shows the 

contents of the document. 
 Requirement completeness and consistency
 In principle, requirements should be both complete and consistent.
 Complete, they should include description of all facilities required.
 Consistent, they should be no conflicts or contradiction in the description 

of the system facilities.
 In practice, it is impossible to produce a complete and consistent 

requirements document. 



 These define system properties and constraints 
e.g. reliability, response time and storage 
requirements.

 Process requirements may also be specified a 
particular CASE system, programing language 
or developments method.

 Nonfunctional requirements may be more 
critical than the functional requirements. If 
these are not met the system is useless.



Should describe functional and 
nonfunctional requirements in such a 
way that they are understandable by 

the developer of the high level 
development.

User requirement are defined using 
natural language ,table and diagrams 
as these can be understandable by all 

users.



 Lack of clarity (document are difficult to read).

 Requirements confusion: the requirements may 
be mixed-up.

 Requirements amalgamations: several 
requirements may be expressed together.





Database design is the process of producing a detailed data
model of database. This data model contains all the needed logical
and physical design choices and physical storage parameters needed
to generate a design in a data definition language, which can then be
used to create a database. A fully attributed data model contains
detailed attributes for each entity.

he term database design can be used to describe many different
parts of the design of an overall database system. Principally, and
most correctly, it can be thought of as the logical design of the base
data structures used to store the data. In the relational model these
are the tables and views. In an object database the entities and
relationships map directly to object classes and named relationships.
However, the term database design could also be used to apply to
the overall process of designing, not just the base data structures,
but also the forms and queries used as part of the overall database
application within the database management system (DBMS).



 The types of information that are saved in the 
database are called 'entities'. These entities exist in 
four kinds: people, things, events, and locations. 
Everything you could want to put in a database fits 
into one of these categories. If the information you 
want to include doesn't fit into these categories, 
than it is probably not an entity but a property of 
an entity, an attribute.

 To clarify the information given in this article we'll 
use an example. Imagine that you are creating a 
website for a shop, what kind of information do 
you have to deal with? In a shop you sell your 
products to customers. The "Shop" is a location; 
"Sale" is an event; "Products" are things; and 
"Customers" are people. These are all entities that 
need to be included in your database.



But what other things are happening when selling a product? A 

customer comes into the shop, approaches the vendor, asks a 

question and gets an answer. "Vendors" also participate, and 

because vendors are people, we need a vendors entity.



 The next step is to determine the relationships between the
entities and to determine the cardinality of each
relationship. The relationship is the connection between the
entities, just like in the real world: what does one entity do
with the other, how do they relate to each other? For
example, customers buy products, products are sold to
customers, a sale comprises products, a sale happens in a
shop.

 The cardinality shows how much of one side of the
relationship belongs to how much of the other side of the
relationship. First, you need to state for each relationship,
how much of one side belongs to exactly 1 of the other side.
For example: How many customers belong to 1 sale?; How
many sales belong to 1 customer?; How many sales take
place in 1 shop?



 Customers --> Sales; 1 customer can buy something several times
 Sales --> Customers; 1 sale is always made by 1 customer at the 

time
 Customers --> Products; 1 customer can buy multiple products
 Products --> Customers; 1 product can be purchased by multiple 

customers
 Customers --> Shops; 1 customer can purchase in multiple shops
 Shops --> Customers, 1 shop can receive multiple customers
 Shops --> Products; in 1 shop there are multiple products
 Products --> Shops; 1 product (type) can be sold in multiple shops
 Shops --> Sales; in 1 shop multiple sales can me made
 Sales --> Shops; 1 sale can only be made in 1 shop at the time
 Products --> Sales; 1 product (type) can be purchased in multiple 

sales
 Sales --> Products; 1 sale can exist out of multiple products



 Customers --> Sales; --> 1:N

 Customers --> Products; --> M:N

 Customers --> Shops; --> M:N

 Sales --> Products; --> M:N

 Shops --> Sales; --> 1:N

 Shops --> Products; --> M:N





 Sometimes an entity refers back to itself. For 
example, think of a work hierarchy: an 
employee has a boss; and the boss chef is an 
employee too. The attribute 'boss' of the entity 
'employees' refers back to the entity 
'employees'.

 In an ERD (see next chapter) this type of 
relationship is a line that goes out of the entity 
and returns with a nice loop to the same entity.



 Sometimes in your model you will get a 'redundant 
relationship'. These are relationships that are already 
indicated by other relationships, although not directly.

 In the case of our example there is a direct relationships 
between customers and products. But there are also 
relationships from customers to sales and from sales to 
products, so indirectly there already is a relationship 
between customers and products through sales. The 
relationship 'Customers <----> Products' is made twice, 
and one of them is therefore redundant. In this case, 
products are only purchased through a sale, so the 
relationships 'Customers <----> Products' can be 
deleted.





 Many-to-many relationships (M:N) are not directly possible in a 

database. What a M:N relationship says is that a number of records from 

one table belongs to a number of records from another table. Somewhere 

you need to save which records these are and the solution is to split the 

relationship up in two one-to-many relationships.

 This can be done by creating a new entity that is in between the 
related entities. In our example, there is a many-to-many 
relationship between sales and products. This can be solved by 
creating a new entity: sales-products. This entity has a many-to-
one relationship with Sales, and a many-to-one relationship with 
Products. In logical models this is called an associative entity and 
in physical database terms this is called a link table or junction 
table



 In the example there are two
many-to-many relationships
that need to be solved:
'Products <----> Sales', and
'Products <----> Shops'. For
both situations there needs
to be created a new entity,
but what is that entity?

 For the Products <----> Sales
relationship, every sale
includes more products. The
relationship shows the
content of the sale. In other
words, it gives details about
the sale. So the entity is
called 'Sales details'. You
could also name it 'sold
products'.

 The Products <----> Shops
relationship shows which
products are available in
which the shops, also known
as 'stock'. Our model would
now look like this:



 The data elements that you want to save for each entity 
are called 'attributes'.

 About the products that you sell, you want to know, 
for example, what the price is, what the name of the 
manufacturer is, and what the type number is. About 
the customers you know their customer number, their 
name, and address. About the shops you know the 
location code, the name, the address. Of the sales you 
know when they happened, in which shop, what 
products were sold, and the sum total of the sale. Of 
the vendor you know his staff number, name, and 
address. What will be included precisely is not of 
importance yet; it is still only about what you want to 
save.



Primary Keys
 A primary key (PK) is one or more data attributes that 

uniquely identify an entity. A key that consists of two or 
more attributes is called a composite key. All attributes part 
of a primary key must have a value in every record (which 
cannot be left empty) and the combination of the values 
within these attributes must be unique in the table.

 In the example there are a few obvious candidates for the 
primary key. Customers all have a customer number, 
products all have a unique product number and the sales 
have a sales number. Each of these data is unique and each 
record will contain a value, so these attributes can be a 
primary key. Often an integer column is used for the 
primary key so a record can be easily found through its 
number.



Foreign Keys

The Foreign Key (FK) in an 
entity is the reference to the 
primary key of another entity. 
In the ERD that attribute will 
be indicated with 'FK' behind 
its name. The foreign key of an 
entity can also be part of the 
primary key, in that case the 
attribute will be indicated with 
'PF' behind its name. This is 
usually the case with the link-
entities, because you usually 
link two instances only once 
together (with 1 sale only 1 
product type is sold 1 time).

If we put all link-entities, PK's 
and FK's into the ERD, we get 
the model as shown



 Normalization makes your data model flexible 
and reliable. It does generate some overhead 
because you usually get more tables, but it 
enables you to do many things with your data 
model without having to adjust it.



 The first form of normalization states that there 
may be no repeating groups of columns in an 
entity. We could have created an entity 'sales' 
with attributes for each of the products that 
were bought. This would look like this:



 What is wrong about this is that now only 3 
products can be sold. If you would have to sell 
4 products, than you would have to start a 
second sale or adjust your data model by 
adding 'product4' attributes. Both solutions are 
unwanted. In these cases you should always 
create a new entity that you link to the old one 
via a one-to-many relationship.



 The second form of normalization states that all 
attributes of an entity should be fully 
dependent on the whole primary key. This 
means that each attribute of an entity can only 
be identified through the whole primary key. 
Suppose we had the date in the Sales_details
entity:



 This entity is not according the second 
normalization form, because in order to be able 
to look up the date of a sale, I do not have to 
know what is sold (product-nr), the only thing 
I need to know is the sales number. This was 
solved by splitting up the tables into the sales 
and the Sales details table:



 The third form of normalization states that all 
attributes need to be directly dependent on the primary 
key, and not on other attributes. This seems to be what 
the second form of normalization states, but in the 
second form is actually stated the opposite. In the 
second form of normalization you point out attributes 
through the PK, in the third form of normalization 
every attribute needs to be dependent on the PK, and 
nothing else.



 In this case the price of a loose product is 
dependent on the ordering number, and the 
ordering number is dependent on the product 
number and the sales number. This is not 
according to the third form of normalization. 
Again, splitting up the tables solves this.





 Attributes - detailed data about an entity, such as price, length, name.

 Cardinality - the relationship between two entities, in figures. For 
example, a person can place multiple orders.

 Entities - abstract data that you save in a database. For example: 
customers, products.

 Foreign key (FK) - a referral to the Primary Key of another table. Foreign 
Key-columns can only contain values that exist in the Primary Key 
column that they refer to.

 Key - a key is used to point out records. The most well-known key is the 
Primary Key (see Primary Key).

 Normalization - A flexible data model needs to follow certain rules. 
Applying these rules is called normalizing.

 Primary key - one or more columns within a table that together form a 
unique combination of values by which each record can be pointed out 
separately. For example: customer numbers, or the serial number of a 
product.


