JATABASE ANALYSIS AND

abase analysis and Database design

A database Is an organized
collection of schemas, tables,

The goal
of using
Database

NVHatis database management
system?

e'and analyze data. A general-purpose
_esigned to allow the definition, creation,

| Server and Oracle.

P _r..'_!-"'.
AP
database DBEMS

Introduction to @

Database analysis Conce
services that the customer

the constraints under w
developed. The requirement
description of the system service
are generated . Dat: alysis is
NATURE and US data
identification of

to support the

organization, the

logical groups and

between the resul

It Is fair to ask why data analysis should be done If It Is
possible, in practice to go straight to a computerized system
design. Data analysis Is time consuming; it throws up a lot
of questions. Implementation may be slowed down while
the answers are sought. It IS more expedient to have an
experienced analyst "get on with the job' and come up with
a design straight away. The main difference IS that data
analysis Is more likely to result in a design which meets
both present and future requirements, Deing More easiy
adapted to changes In the business or in the computing
equipment. It can also be argued that it tends to ensure that
policy questions concerning the organizations' data are
answered by the managers of the organization, not by the
systems analysts. Data analysis may be thought of as the
‘slow and careful' approach, whereas omitting this step IS
“quick and dirty".

build system 1
of a data

specifies the
a and the processes
1at data.

tabase Analysis Life Cycle

I‘ Database study
- Database design

Implementation and loading

Testing and evaluation

Uperation

maintenance and evolution

Database study - here the desi
specification in words for t
built. This involves:

analyzing the company situatio
dynamic in its requirements, me
background in employee trai
etc. These have an impact o
viewed.

Define problems and constrain

currently? How does the compan
new database is to perform? Any is
method? What are t 1its of the ne

Define objectives - v date
have to do, anc

does the compa

want to calculate

Define scope and
database system
to another databe

e

ase Design - conceptual, logical, and

design steps in taking specifications to

lementable designs. This is looked
In a moment.

and loading - it is quite

ssible that the database is to run on a

chine which as yet does not have a database

agement system running on it at the

ment. If this is the case one must be

lled on that machine. Once a DBMS has

been installed, the database itself must be

created within the DBMS. Finally, not all

databases start completely empty, and thus

must be loaded with the initial data set .

and e ation - the database, once implemented, must be
inst the specification supplied by the client. It is also

the database with the client using mock data, as

lways have a full understanding of what they thing
d and how it differs from what they have actually
, this step in the life cycle offers the chance to
the system for best performance. Finally, it

ance and evolution - designers rarely get everything
first time, and it may be the case that the company requests
to fix problems with the system or to recommend

We can distinguish
1 two levels of requirements process:

equirements: these are statements in natural
age plus diagrams of what services the system is
d to provide and constraints under with it must

2. System requirements: these are the set out the
system’s functions, services and operational

constraints in detail.

JOW (O 5;)3:1 the database

The specification is

document containing ¢

reports, screen drawings ar

client to indicate the requi
system is to have. 1 such de
together from a va er
company and tr

are necessary, cc

onceptual Design

se requirements have been
tual Des1gn phase takes the

of the database cture. In this module,
R modeling to represent high-level data
ut there are other techniques. This

independent of the final DBMS which
se will be installed in.

ptual schema and
physical design

ptual Design phase takes the

del it taken and converted into
3 =1z, which is specific to a

1lar DBMS class (e.g. relational). For a

1al system, such as Oracle, an appropriate
nal schema would be relations.

v, in the phase the
conceptual schema is converted into database

‘internal structures. This is specific to a particular
DBMS product.

1. User requirements : 0
referred to as user need
describe what the user doe
with the system, such as what
activities that users must be
able tONSEEEEE. er
requirements are |
documented in

Requirements
URD) wusing ne
ser require
generally signed off
and used as the
for creating
requirement

Jser requirements and system
requirements

t

re l!‘

f software, expected user
Stém where the software

1 that provides a single interface to
ases of articles in different

wnload and print these
es for personal study.

user shall be able to search either all of the
Al set of database or select a subset from it.

stem shall provide appropriate viewers for
the user to read document 1n the document store.

'm Every order shall be allocated a unique identifier
(ORDER-ID) which the user should be able to copy
to the account’s permanent area.

Requirement:

Problems arise when requirements a

Ambiguous requirements may be
developers and users.

Consider the terms “ appropriate vie
1. User intention - special purpose vie

type.
2. Developer interpretat
contents of the documen

Requirement completer
In principle, require
Complete, they sho

Consistent, they shou
of the system facilitie
In practice, it is impos:
requirements docume

Nonfunctional requirements

These define syste
e.g. reliability, resp
requirements.

uld describe functional and
tional requirements in such a
ey are understandable by
er of the high level

ese can be understandable by all
users.

“Wwith natural Ianguage

ocument are difficult to read).
ion: the requirements may

ements amalgamations: several
nents may be expressed together.

e requirement passes thru a
Aumber of steps before
asigning the database

(

]

JATABASE DESIGN

ign is the process of producing a detailed data
. This data model contains all the needed logical
hoices and physical storage parameters needed
data definition language, which can then be

database design can be used to describe many different
the design of an overall database system. Principally, and
ectly, it can be thought of as the logical design of the base

However, the term database design could also be used to apply to
the overall process of designing, not just the base data structures,
but also the forms and queries used as part of the overall database
application within the database management system (DBMS).

Entities

es of information that are saved in the

re called 'entities'. These entities exist in

people, things, events, and locations.

could want to put in a database fits
ne o > categories. If the information you

ant to include doesn't fit into these categories,

an it is probably not an entity but a property of

entity, an attribute.

larify the information given in this article we'll
e an example. Imagine that you are creating a

site for a shop, what kind of information do
you have to deal with? In a shop you sell your
Products to customers. The "Shop" is a location;

Sale" is an event; "Products" are things; and

"Customers" are people. These are all entities that
need to be included in your database.

But what other things are happening when selling a product? A
customer comes into the shop, approaches the vendor, asks a
guestion and gets an answer. "\endors" also participate, and
pecause vendors are people, we need a vendors entity.

ldentifying Relationships

The next step is to determine the relationships between the
entities and to determine the cardinality of each
relationship. The relationship is the connection between the
entities, just like in the real world: what does one entity do
with the other, how do they relate to each other? For
example, customers buy products, products are sold to
customers, a sale comprises products, a sale happens in a

shop.

The cardinality shows how much of one side of the
relationship belongs to how much of the other side of the
relationship. First, you need to state for each relationship,
how much of one side belongs to exactly 1 of the other side.
For example: How many customers belong to 1 sale?; How
many sales belong to 1 customer?; How many sales take
place in 1 shop?

s; 1 customer can buy something several times
sale is always made by 1 customer at the

ustomer can buy multiple products
uct can be purchased by multiple

ers --> Shops; 1 customer can purchase in multiple shops
> Customers, 1 shop can receive multiple customers
Products; in 1 shop there are multiple products

ts --> Shops; 1 product (type) can be sold in multiple shops
Sales; in 1 shop multiple sales can me made

Sales --> Shops; 1 sale can only be made in 1 shop at the time

Prloducts --> Gales; 1 product (type) can be purchased in multiple
sales

@ Sales --> Products; 1 sale can exist out of multiple products

e shorthand The
‘elationships, we'll get:

ers --> Shops; >
> Products; --> M:N

S0, we have two '1-to-many’
f@ationships, and four 'many-to-
many' relationships.

phone nr : price e = address
customer nr 3 type name
name manufacturer o
address

Vendors

staff number [= products
name date
sum total

oyee too. The attribute 'boss' of the entity
oyees' refers back to the entity

oyees'.

- @ Inan ERD (see next chapter) this type of

- relationship is a line that goes out of the entity
and returns with a nice loop to the same entity.

model you will get a 'redundant
are relationships that are already
ionships, although not directly.

e there is a direct relationships
een customers and products. But there are also
onships from customers to sales and from sales to
icts, so indirectly there already is a relationship
reen customers and products through sales. The

- nship 'Customers <----> Products’ is made twice,
and one of them is therefore redundant. In this case,
products are only purchased through a sale, so the

relationships 'Customers <----> Products' can be
deleted.

Jhe model will look like this:

4 N, g N, o
Customers Products Shops

phone nr price address
customer nr type name |
name manufacturer Nt

w, A

address \V 4
b

)

y ~
Vendors Sales

staff number products
name date
5. 4 sum total

»,

tionships (M:N) are not directly possible in a
relationship says is that a number of records from
one table belongs to a number of records from another table. Somewhere
ou need to save which records these are and the solution is to split the
lationship up in two one-to-many relationships.

1S can be done by creating a new entity that is in between the
lated entities. In our example, there is a many-to-many
ationship between sales and products. This can be solved by
ting a new entity: sales-products. This entity has a many-to-
one relationship with Sales, and a many-to-one relationship with
Products. In logical models this is called an associative entity and
in physical database terms this is called a link table or junction

Sales_details Paess

\/

Vendors

staff number
name

ata elements that you want to save for each entity
d 'attributes'.

roducts that you sell, you want to know,
r example, what the price is, what the name of the
manufacturer is, and what the type number is. About
the customers you know their customer number, their
name, and address. About the shops you know the
location code, the name, the address. Of the sales you
kKnow when they happened, in which shop, what
products were sold, and the sum total of the sale. Of
he vendor you know his staff number, name, and
address. What will be included precisely is not of
importance yet; it is still only about what you want to

Save‘ Customers m

phone nr price
customer nr type

name manufacturer
address

Vendors

staff number products
name date
sum total

is one or more data attributes that
entity. A key that consists of two or

a composite key. All attributes part
e a value in every record (which
ot be left empty) and combination of the values
these attributes must be unique in the table.

example there are a few obvious candidates for the

vy key. Customers all have a customer number,

icts all have a unique product number and the sales
sales number. Each of these data is unique and each
will contain a value, so these attributes can be a
primary key. Often an integer column is used for the
primary key so a record can be easily found through its
number.

re attribute .
primary key mus

Foreign Keys

product_codefFK <PF>
sales_nrFK <PF>
cuantity

Vendors

staff_nr <Pk sales_nr <PK>
name | customer_nr <FK=
. staff_mr <FK=
shop nr <FR=

date

sum_total

product_code <PF>
shop_nr <PF>
guantity

shop_nr <PK>
address
name

rmalization

kes your data model flexible
enerate some overhead

you to do many
ithout having to adjust it.

-

rmalization, the First Form

of normalization states that there
ating groups of columns in an
tity. We could have created an entity 'sales'
ith attributes for each of the products that

re bought. This would look like this:

productt
product2

product3
sum_total
date

at is wrong about this is that now only 3

ts can be sold. If you would have to sell
s, than you would have to start a

ond sale or adjust your data model by
adding '‘product4' attributes. Both solutions are
unwanted. In these cases you should always
reate a new entity that you link to the old one
via a one-to-many relationship.

m Sales_details

sales_nr <PK> < |sales_nr <PF>

sum_total product_nr
date

‘malization, the Second Form

nd form of normalization states that all
attributes of an entity should be fully
dependent on the whole primary key. This
eans that each attribute of an entity can only
be identified through the whole primary key.
uppose we had the date in the Sales_details

entity:

sales_nr <PK>

product_nr <PK>

s entity is not according the second

ization form, because in order to be able
p the date of a sale, I do not have to
now what is sold (product-nr), the only thing
I need to know is the sales number. This was
solved by splitting up the tables into the sales
and the Sales details table:

Sales_details

sales_nr <PK> ~.~|sales_nr <PF>

date : product_nr <PK>
guantiy

nalization, the Third Form

of normalization states that all
attributes need to be directly dependent on the primary
key, and not on other attributes. This seems to be what
e second form of normalization states, but in the
cond form is actually stated the opposite. In the
econd form of normalization you point out attributes
ough the PK, in the third form of normalization

ry attribute needs to be dependent on the PK, and
nothing else.

sales_nr <PK>
product_nr <PK>

order_code
unit_price
quantity
sum_total

& In this case the price of a loose product is
dependent on the ordering number, and the
ordering number is dependent on the product
number and the sales number. This is not
according to the third form of normalization.
Again, splitting up the tables solves this.

Sales_(etails '

sales nr <PK> product_nr <PK>
product_nr <PF> =g order_code

unt_price

If yo

that the

(

_—

Customers Products Stock
customer_mnr INTEGER <PK> product_code WTEGER <PK-| , _ _lproduct_code INTEGER <PF>
phone_nr VARCHAR manufacturer_nr INTEGER <FK=[| ~|shop_nt INTEGER <PF>
name VARCHAR price FLOAT quantity SMALLINT
address YARCHAR type VARCHAR N
b A ., A }/

T v T °
]
l ¢ ¢ ake
| ; /N
r Mamufacturers] r Sales_details] r Shops]
l manufacturer_nr INTEGER product_code INTEGER <PF> shop_mt INTEGER <PK~>
| [name VARCHAR sales_nr INTEGER <PF> address VARCHAR
l cquantty SMALLINT nams VARCHAR
N
R . —— 4 T
‘ A A
(Vendors Sales
staff_nr INTEGER <PK> [—— ©<_{sales_nr WMTEGER <PK>
name TEXT customer_nr INTEGER «FK»
4 staft_nr INTEGER <FK=
shop_nr INTEGER <FK»
date TIMESTAMP
sum_total FLOAT

.

Glossary

data about an entity, such as price, length, name.

lonship between two entities, in figures. For
ce multiple orders.

| u save in a database. For example:
omers, products.

n key (FK) - a referral to the Primary Key of another table. Foreign
olumns can only contain values that exist in the Primary Key
that they refer to.

key Is used to point out records. The most well-known key is the
ry Key (see Primary Key).

Ization - A flexible data model needs to follow certain rules.
App these rules is called normalizing.

@ Primary key - one or more columns within a table that together form a
unique combination of values by which each record can be pointed out
separately. For example: customer numbers, or the serial number of a
product.

