
BY:ENG.VIAN ADNAN

AL NAHRAIN UNIVERSITY/COMPUTER CENTER

C++ language

Computer is a device capable of performing computations and making

logical decisions at speeds millions and even billions of times faster than

human beings.

Computers process data under the control of sets of instructions called

computer programs.

Programming is the process of writing instructions for a computer in a

certain order to solve a problem.

The computer programs that run on a computer are referred to as software

(SW). While the hard component of it is called hardware (HW).

Developing new software requires written lists of instructions for a computer

to execute. Programmers rarely write in the language directly understood by

a computer

History of C++

- Extension of C

- early 1980s: bjarne stroustrup

- For the last couple of decades, the C programming language has

been widely accepted for all applications, and is perhaps the most powerful

of structured programming languages. Now, C++ has the status of a

structured programming language with object oriented programming (OOP).

C++ has become quite popular due to the following reasons:

1. It supports all features of both structured programming and OOP.

2. C++ focuses on function and class templates for handling data

types.

1.14 Basics of a Typical C++ Environment

Phases of C++ Programs:

- Edit

- Preprocess

- Compile

- Link

- Load

- Execute

Loader

Primary

Memory

Program is created in

the editor and stored

on disk.

Preprocessor program

processes the code.

Loader puts program

in memory.

CPU takes each

instruction and

executes it, possibly

storing new data

values as the program

executes.

Compiler

Compiler creates

object code and stores

it on disk.

Linker links the object

code with the libraries,

Editor

Preprocessor

Linker

CPU

Primary

Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

Flowcharts
A flowchart is a graphical

representation of an

algorithm or of a portion of

an algorithm .

Flowcharts are drawn using

symbols.

Example:

• #include <iostream.h> cin,cout,….

• #include <math.h> abs,sin,cos,tan,sqrt,…

• #include <string.h> strcat,strchr,strcpy,…

• #include<graphics.h> circle(xx,y,radius)

• #include <stdio.h> printf,scanf,gets(),….

#Include preprocessor directive:

In the C++ programming language, the #include

directive tells the preprocessor to insert the contents

of another file into the source code at the point where

the #include directive is found.

Syntax
The syntax for the #include directive in the C

language is:

#include <header_file>

OR

#include "header_file "

Variables :
variable is a symbolic name for a memory location in
which data can be stored and subsequently recalled.

Datatype id.1, id2, …,idn;

A variable defined by stating its type, followed by one or
more spaces, followed by the one or more variable
names separated by commas, then followed by
semicolon. For example:

Unsigned short int X;
Float Y;
char A, a, c;
int num=80;

- variable can be declared anywhere in code .
- Variable names are case sensitive.

Type Description

char Typically a single octet(one byte). This is

an integer type.

int The most natural size of integer for the

machine, two byte.

float A single-precision floating point value ,

four bytes.

double A double-precision floating point value,

eight bytes.

void Represents the absence of type.

Keywords:
the keywords are also identifiers but cannot be user defined,
since they are reserved words. All the keywords should be in
lower case letters. Reserve words cannot be used as variable
names or constant. The following words are reserved for use as
keywords:

Break, case, char, cin, cout, delete, double ,else, enum, false,
float, for, goto, if, int, long ,main, private, public, short, sizeof,
switch, true, union, void…..

Escape of sequences

Endl : end line

Comments :
- A comment is a piece of descriptive text which explains some aspect of a program.

- program comments are totally ignored by the compiler and are only intended for human readers.

-C++ provides two types of comment delimiters:

*Anything after // (until the end of the line on which it appears) is considered a comment.

This is first program//

* Anything enclosed by the pair /* and */ is considered a comment

/*this is first progam

Enjoy

*/

Input/output:
cin: standard input stream normally keyboard

cin>>var.1>>var.2>>…>>var.N;

cout :standard output stream normally computer screen

cout<<var.1<<var2<<…<<var.N;

Example :

The following program reads three different inputs and outputs.

#Include<iostream.h>

Void main()

{ int num=3;

Cout << “number=”<<num<<”\n”;

Char ch=’a’;

Cout << “character=”<<ch<<”\n”;

Float fa=-34.45;

Cout<<”real number=”<<fa<<”\n”; }}

Output:

Number=3

Character=a

Real number=34.45

Example :
Write a program that reads the radius of a circle, then computes and outputs its

area.

#include<iostream.h>

void main()

{

const float pi = 3.14;

int r; float c;

cout << “enter the radius of circle:”;

cin>>r;

cout<<endl;

c = r * r * pi;

cout << “the area of circle:” << c;

{

C++ opertors

1. Arithmetic operators : These operators require two variables to be evaluated:

+ addition - subtraction * multiplication

/ division % modula (remainder of an integer division)

The division result are:

Integer / integer = integer ► 39/7=5

Integer / float = float ► 39/7.0 =5.57

float / integer = float ► 39.0/7 =5.57

float / float = float ► 39.0/7.0=5.57

Example:
X+y*X-Z, where X=5, Y=6, and Z=8.

5+(6*5)-8 ;

(5+30)-8;

35-8=27

2. Assignment Operators: The operatonal assignment operator has the form:

Variable = variable operator expression;
The operational assignment operator can be written in the following form:

Variable operator = expression

Ex: x=x+5; y=y*10;

Ex: x+=5; y*=10;

Example: Rewrite the equivalent statements for the following

examples, and find it results. Assume: X=2 , Y=3 , Z=4 , V=12 , C=8.

X += 5 X = X + 5 X = 7

Y -= 8 Y = Y – 8 Y = -5

Z *= 5 z = ?

V /= 4 V = ?

C %= 3 C = ?

3. Comparision and logical operators: It has three types relational operators, equality

operators, and logical operators.

(a) Relational operators:
< less than,

> greater than,

<= less than or equal,

>= greater than or equal,

an expression that use relational operators return the value of one if the relational is TRUE,

ZERO otherwise.

Ex: 3 > 4 → false, 6 <=2 →false, 10>-32 → true, (23*7)>=(-67+89) → true

(b) Equality operators:
== equal to , != not equal to

Ex: a=4, b=6, c=8. A==b→false, (a*b)!=c→true, ‘s’==’y’ →false.

(C) logical operators: the logical expression is constructed from
relational expressions by the use of the logical operators not(!), And(&&),
or(||)

(d) Bitwise logical operator:
& bitwise AND,

^ bitwise exclusive OR(XOR),

| bitwise inclusive OR,

>> bitwise left shift,

<< bitwise right shift,

~ bitwise complement.

Ex: x=23 (0001 0111) ~x=132 (1110 1000)

Ex: X=5, y=2 → x&y (0000) , x|y (0111) , x^y (0111)

Example:
The following program computes different division operators.

#include<iostream.h>

void main()

}

int x, y, z, r ;

x= 7 / 2;

cout << "x=" << x <<endl;

y=17/(-3);

cout << "y="<< y <<endl;

z=-17/3;

cout << "z="<< z <<endl;

r=-17/(-3);

cout << "r="<< r <<endl;

{

Example:

#include<iostream.h>

void main()

}

int y1, y2;

y1 = 8 % 3;

y2 = -17 % 3;

cout << "y1="<< y1 <<endl;

cout << "y2="<< y2 <<endl;

{

Example :
State the order of evaluation for the following expression:

Z = P * R % Q + W / X – Y;
Solution:

*

%

/

+

-

#include<iostream.h>

void main()

}

int Z, P, R, Q, W, X, Y;

cout << "enter P:"; cin >> P;

cout << "enter R:"; cin >> R;

cout << "enter Q:"; cin >> Q;

cout << "enter W:"; cin >> W;

cout << "enter X:"; cin >> X;

cout << "enter Y:"; cin >> Y;

Z= P * R % Q + W / X - Y;

cout << "the result="<< Z;

}

The “math.h” Library:
The “math.h” library contains the common mathematical function used in the scientific equations.

Example: Write the following equation as a C++ expression and state the order of evaluation of

the binary operators:

Solution:

f = sqrt ((sin(x) – pow(x,5)) / (log(x) + x/4))

Order of evaluation:

Prefix & postfix
the ++ and - - operators can be written either before the variable (prefix notation) or after the
variable (postfix notation) as in the following:

prefix notation: ++ X X is incremented before its value is taken or returned to current
statement.

Postfix notation: X ++ X is incremented after its value is taken or returned to current
statement.

Selection Statements:
Conditional expressions are mainly used for decision making. C++ provides multiple selection structures:

if, if/else, else if, nested if and switch.

The Single If Statement Structure:The IF statement is used to express conditional expression. If the given

condition is true then it will execute the statements; otherwise it will execute the optional statements.

Example :
Write a C++ program to read any two numbers and print the largest value of it:

#include<iostream.h>

void main()

}

Float x,y;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y;

If (x>y)

Cout << “largest value is”<<x<<endl;

{

The Single Block If Statement Structure :
The block IF statement are enclosed in ({) and (}) to group declaration and statements into a

compound statement or a block. These blocks are always considered as a single statement. The

structure is:

Example:
Write a C++ program to read a number and check if it’s positive, if it’s so print it, add it to a total, and

decrement it by 2:

#include<iostream.h>

void main()

}

int num, total=0;

cin >> num;

if (num >= 0)

{ cout << num <<” is a positive”;

total += num; num = num – 2;

{

{

The If/else Statement Structure:

Example :
Write a C++ program to read a student degree, and check if it’s degree greater than or equal to 50,

then print pass, otherwise print fail:

#include<iostream.h>

void main()

}

int degree;

cin >> degree;

if (degree >= 50)

cout << ”pass”;

else

cout << “fail”; {}

Example:
Write a C++ program to read a number, and check if it’s even or odd:

#include<iostream.h>

void main()

}

int num;

cin >> num;

if (num % 2 == 0)

cout << ”even”;

else

cout << “odd”;

{

Else if Statements:

Example:
Write a C++ program to read a number, and print the day of the week:

#include<iostream.h>

void main()

}

int day;

cin >> day;

if (day == 1) cout << “Sunday”;

else if (day == 2) cout << “Monday”;

else if (day == 3) cout << “Tuesday”;

else if (day == 4) cout << “Wednesday”;

else if (day == 5) cout << “Thursday”;

else if (day == 6) cout << “Friday”;

else if (day == 7) cout << “Saturday”;

else cout << “Invalid day number”;

{

Example:
Write C++ program to compute the value of Z according to the following equations:

x + 5 : x < 0

Z = cos(x) + 4 : x = 0

√ x : x > 0

#include<iostream.h>

void main()

}

int Z, x;

cout << "Enter X value \n";

cin >> x;

if (x < 0) Z= x + 5;

else if (x == 0) Z= cos(x) + 4;

else Z= sqrt(x);

cout << "Z is " << Z;

{

Nested If Statements:
Some of the samples of NESTED if-else constructions are shown below:

Example: Write C++ program to find a largest value among three numbers:
#include<iostream.h>

void main()

{

Float x,y,z;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y,z;

If (x>y)

{

If (x>z)

Cout << “largest value is”<<x<<endl;

Else

Cout << “largest value is”<<z<<endl;

}

Else If (y>z)

Cout << “largest value is”<<y<<endl;

Else

Cout << “largest value is”<<z<<endl;

{

The Switch Selection Statement (Selector):
The switch statement is a special multi way decision maker that tests whether an expression matches one of

the number of constant values, and braces accordingly.

Example:
Write C++ program to read integer number, and print the name of the day in a week:

#include<iostream.h>

void main()

{

int day;

cout << "Enter the number of the day \n";

cin >> day;

switch (day)

{

case 1: cout << "Sunday"; break;

case 2: cout << "Monday"; break;

case 3: cout << "Tuesday"; break;

case 4: cout << "Wednesday"; break;

case 5: cout << "Thursday"; break;

case 6: cout << "Friday"; break;

case 7: cout << "Saturday"; break;

default: cout << "Invalid day number"; break;

}}

Example :
Write C++ program to read two integer numbers, and read the operation to perform

on these numbers:
#include<iostream.h>

void main()

{

int a, b;

char x;

cout << “Enter two numbers \n”;

cin >> a >> b;

cout << “+ for addition \n”;

cout << “- for subtraction \n”;

cout << “* for multiplication \n”;

cout << “/ for division \n”;

cout << “enter your choice \n”;

cin >> x;

switch (x)

}

case ‘+’: cout << a + b;

break;

case ‘-’: cout << a - b;

break;

case ‘*’: cout << a * b;

break;

case ‘/’: cout << a / b;

break;

default: break;

}

}

Loop Statements:
The loop statements are essential to construct systematic block styled programming. C++ provides

three iteration structures: while, do/while, and for.

While Repetition Structure:

Example
i = 0;

while (i < 10)

}

cout << i;

i ++;

{

Output:

0 1 2 3 4 5 6 7 8 9

Example:
Write C++ program to find the summation of the following series: sum = 1 + 3 + 5 + 7 + … + 99

in other words: find the summation of the odd numbers, between 0 and 100

#include<iostream.h>

void main()

}

int count = 1;

int sum = 0;

while (count <= 99)

}

sum = sum + count;

count = count + 2;

{

cout << “sum is: “ << sum << endl;

{

Example :
Write C++ program to find the summation of student’s marks, and it’s average, assume the student

have 8 marks:
#include<iostream.h>

void main()

}

int mark, i, sum = 0;

float av = 0;

i = 1;

while (i <= 8)

}

cout << “enter mark: “;

cin >> mark;

sum = sum + mark;

i++;

{

cout << “sum is: “ << sum << endl;

av = sum / 8;

cout << “average is: “ << av; }}

Example :
Write C++ program that display the following board pattern:

* * * * * * * *

 * * * * * * **

* * * * * * * *

 * * * * * * **

* * * * * * * *

 * * * * * * **

* * * * * * * *

 * * * * * * **
#include<iostream.h>

void main()

}

int row = 8, column;

while (row-- > 0)

column = 8;}

if (row % 2 == 0)

cout << “ “;

while (column-- > 0)

cout << “*”;

cout << ‘\n’;

{ {

Do / While Statement:

Example :
i = 0;

do

}

cout << i;

i ++;

{

while (i < 10)

Output:

0 1 2 3 4 5 6 7 8 9

Example:
Write C++ program to valid input checking, that accept the numbers between 50 ...

70 only:
#include<iostream.h>

void main()

}

int accept = 1;

int x, low = 50, high = 70;

do

}

cout << “enter number: “;

cin >> x;

if (x >= low && x <= high)

accept =1;

else

accept = 0;

{

while (! accept); }
while (accept == 1) or

while (accept != 0)

Example:
Write C++ program to find the factorial of n: n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

}

int n, f = 1;

cout << “enter positive number: “;

cin >> n;

do

}

f = f * n;

n --;

{

while (n > 1);

cout << “factorial is: “ << f;

{

Example:

Write C++ program to find the summation of even numbers

#include<iostream.h>

void main()

}

int max,sum,digit;

digit=2;

cout << “enter a number: “;

cin >> max;

sum=0;

do

}

Sum=sum+digit;

Digit+=2;

{

while (digit<=max);

cout << “2+4+…=”<<max<<”sum=”<<sum<<endl; }

For Statement:

Example :
for (i = 0; i < 10; i ++)

cout << i;

Output:
0 1 2 3 4 5 6 7 8 9

Example:
Write C++ program to find the factorial of n (using for statement): n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

}

int n, f = 1;

cout << “enter positive number: “;

cin >> n;

for (int i = n; i >=2 n; i --)for (int i = 2; i <= n; i ++)

f = f * i;

cout << “factorial is: “ << f;

{

Example:
Write C++ program to the result of the following:

#include<iostream.h>

void main()

}

int sum = 0;

for (int i = 1; i <= 20; i ++)

sum = sum + (i * i);

cout << “The sum is: “ << sum;

{

Example:
Write C++ program to read 10 integer numbers, and find the sum of positive number only:

#include<iostream.h>

void main()

}

int num, sum = 0;

for (int i = 1; i <= 10; i ++)

}

cout << “enter your number: “;

cin >> num;

if (num > 0)

sum = sum + num;

{

cout << “The sum is: “ << sum;

{

Example:
Write C++ program to print the following series: 1, 2, 4, 8, 16, 32, 64
#include<iostream.h>

void main()

}

int x;

for (x = 1; x < 65; x *= 2)

cout << x <<” “;

{

Example: Write C++ program to print the following:
#include<iostream.h>

void main()

}

int x;

for (x = 1; x < 7; ++ x)

cout << x <<”\t“ << 11 – x << endl;

{

1 10

2 9

3 8

4 7

5 6

6 5

Nested Loops:
We can put loops one inside another to solve a certain programming problems. Loops may be

nested as follows:

Example:
Write C++ program to print the following figure:+

+ +

+ + +

+ + + +

+ + + + +

+ + + + + +

+ + + + + + +

+ + + + + + + +

+ + + + + + + + +

 + + + + + + + + ++

#Include<iostream.H>
Void main()
}
Int i, j;
For (i = 1; i <= 10; i ++)

{ For (j = 1; j <= i; j ++)
Cout << “ + “;
Cout << “\n“;} }

Example:
What is the output of the following C++ program?????????????

#include<iostream.h>

void main()

}

int i, j, k;

for (i = 1; i <= 2; i ++)

}

for (j = 1; j <= 3; j ++)

}

for (k = 1; k <= 4; k ++)

cout << “ + “;

cout << “\n“:

{

cout << “\n“;

{

{

Functions:
A function is a set of statements designed to accomplish a particular task. Experience has shown

that the best way to develop and maintain a large program is to construct it from smaller pieces or

(modules). Modules in C++ are called functions. Functions are very useful to read, write, debug and

modify complex programs. They can also be easily incorporated in the main program. In C++, the

main() itself is a function that means the main function is invoking the other functions to perform

various tasks.

Defining a Function :
Example:
void printmessage ()

}

cout << “University of Technology”;

{

void main ()

}

printmessage(); }

Example:
Write C++ program using function to calculate the average of two numbers entered by the user in

the main program:

#include<iostream.h>

float aver (int x1, int x2)

}

float z;

z = (x1 + x2) / 2.0;

return (z);

{

void main()

}

float x;

int num1,num2;

cout << "Enter 2 positive number \n";

cin >> num1 >> num2;

x = aver (num1, num2);

cout << x; }

Example:
Write C++ program, using function, to find the summation of the following series:

#include<iostream.h>

int summation (int x)

}

int i = 1, sum = 0;

while (i <= x)

}

sum += i * i ;

i++;

{

return (sum);

{

void main ()

}

int n ,s;

cout << "enter positive number";

cin >> n;

s = summation (n);

cout << "sum is: " << s << endl;

}

Example :
Write a function to find the largest integer among three integers entered by the user in the main

function.
#include <iostream.h>

int max(int y1, int y2, int y3)

}

int big;

big=y1;

if (y2>big) big=y2;

if (y3>big) big=y3;

return (big);

{

void main()

}

int largest,x1,x2,x3;

cout<<"Enter 3 integer numbers:";

cin>>x1>>x2>>x3;

largest=max(x1,x2,x3);

cout<<largest; }

Arrays:
An array is a consecutive group of homogeneous memory locations. Each element (location) can be referred to

using the array name along with an integer that denotes the relative position of that element within the array.

The data items grouped in an array can be simple types like int or float, or can be user-defined types like

structures and objects.

Array of One Dimension:

It is a single variable specifies each array element. The declaration of one dimensional arrays is:

data-type Array-name [size];

Examples:
int age [10];

int num [30];

float degree[5];

char a [15];

Initializing Array Elements:
- The first element of array age:

age [0] = 18;

- The last element of array age:

age [9] = 19;

- All elements of array age:

age [9] = { 18, 17, 18 ,18 ,19, 20 ,17, 18 ,19 };

Accessing Array Elements:
We access each array element by written name of array, followed by brackets delimiting a variable (or constant)

in the brackets which are called the array index.

- Accessing the first element of array num to variable x:

x = num [0];

- Accessing the last element of array num to variable y:

y = num [9];

- cout << num [0] + num [9];

- num [0] = num [1] + num[2];

- num [7] = num [7] + 3; num [7] += 3;

Example:
Write C++ program to read 5 numbers and print it in reverse order:

#include<iostream.h>

void main()

}

int a [5];

cout << "Enter 5 numbers \n";

for (int i =0; i <5; i++)

}

cout << i << “: “;

cin >> a [i];

cout << “\n”;

{

cout << “The reverse order is: \n”;

for (i =4; i >=0; i--)

cout << i << “: “ << a [i] << endl;

{

Example:
Write C++ program, to find the summation of array elements:

#include<iostream.h>

void main ()

}

int const L = 10;

int a [L];

int sum = 0;

cout << "enter 10 numbers \n";

for (int i =0; i <L; i++)

}

cout << “enter value “ << i << “: “;

cin >> a [i];

sum += a [i];

{

cout << "sum is: " << sum << endl;

{

Example:
Write C++ program, to find the minimum value in array of 8 numbers:

#include<iostream.h>

void main ()

{ int n = 8; int a [] = { 18, 25, 36, 44, 12, 60, 75, 89 };

int min = a [0];

for (int i = 0; i < n; i++)

if (a [i] < min) min = a [i];

cout << "The minimum number in array is: " << min;

}

Example:
Write C++ program, using function, to find (search) X value in array, and return the index of it’s

location:
#include<iostream.h>

int search(int a[], int y)

}

int i= 0;

while (a [i] != y)

i++;

return (i);

{

void main ()

}

int X, f;

int a [10] = { 18, 25, 36, 44, 12, 60, 75, 89, 10, 50 };

cout << “enter value to find it: “;

cin >> X;

f= search (a, X);

cout << “the value “ << X << “ is found in location “<< f; }

Array of Two Dimension:
Arrays can have higher dimension. There can be arrays of two dimension which is array of

arrays. It is accessed with two index. Also there can be arrays of dimension higher than two.

General Form of 2D-Array:

data-type Array-name [Row-size] [Col-size];

Example:

int a [10] [10];

int num [3] [4];

Initializing 2D-Array Elements:
- The first element of array age:

a [2] [3] = { {1, 2, 3} , {4, 5, 6} };

Example:
Write C++ program, to read 15 numbers, 5 numbers per row, the print them:
#include<iostream.h>

void main ()

}

int a [3] [5];

int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 5; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

}

for (j = 0 ; j < 5; j++)

cout << a [i] [j]; cout << endl; } }

Example:
Write C++ program, to read 4*4 2D-array, then find the summation of the array elements, finally print

these elements:
#include<iostream.h>

void main ()

}

int a [4] [4];

int i , j, sum = 0;

for (i = 0 ; i < 4; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 4; i++)

for (j = 0 ; j < 4; j++)

sum += a [i] [j];

cout << “summation is: “ << sum << endl;

for (i = 0 ; i < 4; i++)

}

for (j = 0 ; j < 4; j++)

cout << a [i] [j]; cout << endl; } }

Example:
Write C++ program, to read 3*4 2D-array, then find the summation of each row:
#include<iostream.h>

void main ()

}

int a [3] [4];

int i , j, sum = 0;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

}

sum = 0;

for (j = 0 ; j < 4; j++)

sum += a [i] [j];

cout << “summation of row “ << i << “ is: “ << sum << endl;

{

{

Example:
Write C++ program, to read 3*4 2D-array, then replace each value

equal 5 with 0:
#include<iostream.h>

void main ()

}

int a [3] [4];

int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

if (a [i] [j] == 5) a [i] [j] = 0;

for (i = 0 ; i < 3; i++)

}

for (j = 0 ; j < 4; j++)

cout << a [i] [j];

cout << endl; } }

Example: Write C++ program, to convert 2D-array into 1D-array:

#Include<iostream.h>

Void main ()

}

Int a [3] [4];

Int b [12];

Int i , j, k = 0;

For (i = 0 ; i < 3; i++)

For (j = 0 ; j < 4; j++)

Cin >> a [i] [j];

For (i = 0 ; i < 3; i++)

For (j = 0 ; j < 4; j++)

}

B [k] = a [i] [j];

K++;

}

For (i = 0 ; i < k; i++)

Cout << b [i]; } }

Example: Write C++ program, to replace each element in the main diameter

(diagonal) with zero:
#include<iostream.h>

void main ()

}

int a [3] [3];

int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 3; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 3; j++)

if (i == j) a [i] [j] = 0;

for (i = 0 ; i < 3; i++)

}

for (j = 0 ; j < 3; j++)

cout << a [i] [j]; cout << endl;

{ {

String:
In C++ strings of characters are implemented as an array of characters. In addition a special null

character, represented by \0, is appended to the end of string to indicate the end of the string.

General Form of String:

char String-name [size];

Examples:
char name [10] = “Mazin Alaa”;
’M’ , ’a’ , ’z’ , ’i’ , ’n’ , ’ ’ , ’A’ , ’l’ , ’a’ , ’a’ , ’\0’

char str [] = “ABCD“;
’A’ , ’B’ , ’C’ , ’D’ , ’\0’

str [0] : ’A’

str [1] : ’B’

str [2] : ’C’

str [3] : ’D’

str [4] : ’\0’ null

Example :
Write C++ program to print string, then print it character by character:

#include<iostream.h>

void main()

}

char s [] = “ABCD”;

cout << “Your String is: “ << s << endl;

for (int i =0; i < 5; i++)

cout << “S[“ << i << “] is: “ << s [i] << endl;

{

Output is:
Your String is: ABCD

S[0] is: A

S[1] is: B

S[2] is: C

S[3] is: D

S[4] is:

Example:
Write C++ program to convert each lower case letter to upper case letter:

#include<iostream.h>

#include<ctype.h>

void main()

}

char s [] = “abcd”;

cout << s << endl;

for (int i =0; i < 4; i++)

s [i] = char(toupper (s[i]));

cout << s;

{

Member Function of String:
The string library has many member functions of string like:

Data structure:
data : set of information & raw material.
Structure : any information in a well design manner.
Data structure can be defined in two parts:
1) linear data structure: accessing of data values are made in a sequential fashion
EX: Array ,link list, stack, queue.
2) non- linear data structure: accessing of data values are made in a non linear
fashion or non continue fashion EX:Tree, graph

data structure applications:
1) design & controlling os.
2) design & controlling the file management.
3) design & controlling process management.
4) design & controlling memory management.
5) design & controlling computer language.
6) animation & video game.

Stack (data structure):
stack is a temporary abstract data type and data structure based on the principle of
last in first out (LIFO). It has two operations:
1) push operation
2) pop operation

Stack algorithms :
A- push algorithm : let int s[n] is array represent a stack

1- is stack over flow?

If top=n then cout<<“stack is full” and exit’

2- increment top pointer

Top =top+1

3- push new element and exit

S[stop]=x and exit

B- pop algorithm :

1- is stack under flow?

If top=0 then cout<<“stack is empty” and exit’

2- delete the element

x =s[top]

3- decrement top pointer

Top=top-1

Example:

queue (data structure):
queue is linear D.S. in which insertion and deletion operation performed on different
ends. It’s a FIFO (first in first out) list . The first end called Rear and later is called
Front . element insert from rear –end and delete from front end .

A- insert algorithm : let int Q[n] is array represent a queue

1- is queue over flow?

If Rear=n then cout<<“Queue is over flow” and exit’

2- increment Rear pointer

Rear =Rear+1

3- insert new element

Q[Rear]=x

4- is Front pointer properly set ?

If Front =0 then set Front to 1 and exit

B- delete algorithm :

1- is queue under flow?

If Front=0 then cout<<“queue is under flow” and exit

2- delete the first element

x =Q[Front]

3- is queue empty

If Front =Rear then Front =Rear =0 and exit

4- increment Front pointer

Front=Front+1 and exit

Queue algorithms :

Example:

Structures:
Structures are typically used to group several data items together to form a single entity. It is a

collection of variables used to group variables into a single record. Thus a structure (the keyword

struct is used in C++) is used. Keyword struct is a data-type, like the following C++ data-types (int,

float, char, etc...). This is unlike the array, which all the variables must be the same type. The data

items in a structure are called the members of the structure.

The Three Ways for Declare the Structure:

#Include <iostream.h>

Struct data

}

Char name;

Int age;

};

Void main()

}

Struct data student;

……..

…….. {

struct data

}

char name;

int age;

} student;

typedef struct

}

char name;

int age;

} student;

To access elements in a structure, use a record selector (.).

student . name="ahmed";

student . age=20;

This example uses parts inventory to demonstrate structures.

#include<iostream.h>

Struct part // specify a structure

}

int model_no;

int part_no;

Float cost;

;{

Void main()

}

part p1; // define a structure variable.

p1.model_no=6244;

p1.part_no=373;

p1.cost=217.55;

cout<<”\n model”<<p1.model_no;

cout<<” part”<<p1.part_no;

cout<<” cost”<<p1.cost;

}

Examle:
Write C++ program to find the distance in English system. 1 foot=12 inch.
#include<iostream.h>

struct distance

}

int feet;

float inches;

;{

Void main ()

}

distance d1,d3;

distance d2={11,6.25};

cout<<”\n Enter feet:”;

cin>>d1.feet;

cout<<”\n Enter inches:”;

cin>>d1.inches;

d3.inches=d1.inches+d2.inches;

d3.feet=0;

If (d3.inches >=12.0)

}

d3.inches -=12.0;

d3.feet ++;

{

d3.feet +=d1.feet + d2.feet;

cout<<d1.feet<<”\’-“<<d1.inches<<”\”+”;

cout<<d2.feet<<”\’-“<<d2.inches<<”\”=”;

cout<<d3.feet<<”\’-“<<d1.inches<<”\”\n”;

{

Example:
Write C++ program to find the area of the room in English system.

#include<iostream.h>

struct distance

}

int feet;

float inches;

;{

struct room

}

distance length;

distance width;

;{

Void main ()

}

room dining;

dining.length.feet=13;

dining.length.inches=6.5;

dining.width.feet=10;

dining.width.inches=0.0;

float L=dining.length.feet+dining.length.inches/12;

float W=dining.width.feet+dining.width.inches/12;

cout<<”\n Dining room area is”<<L*W<<”Square feet”;

}

Array of Structures:
The struct is a data-type. So we can define an array as an array of struct, like define an array as an

array of int, or of any other C++ data-types.

Example:
Write a C++ Program, using structure type, to read name and age for ten students.

#include<iostream.h>

typedef struct

}

char name[20]; //Or name[10]

int age;

} student;

void main ()

}

student array [10];

for (i = 0 ; i < 10 ; i++)

}

cin >> array [i] . name;

cin >> array [i] . age;

{

for (i = 0 ; i < 10 ; i++)

}

cout << array[i] . name << endl;

cout << array[i] . age;

{
}

Functions and Structures:
A structure can be passed to a function as a single variable. The scope of a structure declaration

should be an external storage class whenever a function in the main program is using a structure

data types. The field or member data should be same throughout the program either in the main or

in a function.

Example :
Write C++ program to display the contents of a structure using function definition.
#include<iostream.h>

struct date

{

int day;

int month;

int year;

;{

Void main(void)

}

date today;

void display (struct date one); // function declaration

today.day=18;

today.month=1;

today.year=2017;

display (today);

{

Void display (struct date one)

{ cout<<”Today’s date is =” << one.day << “/”;

cout<< one.month;

cout<<”/” << one.year << endl;

{

Oop object oriented program
three importance OOP features:
• Encapsulation and Data Hiding.

• Inheritance and Reuse.

• Polymorphism.

Class Definition:
Class is a keyword, whose functionality is similar to that of the struct keyword, but with the possibility of

including functions as members, instead of only data. Classes are collections of variables and functions that

operate on those

variables. The variables in a class definition are called data members, and the functions are called member

functions.

Note: Class is a specification for number of objects.

Figure2: Syntax of a class definition

Class members fall under one of three different access permission categories:
 Public members are accessible by all class users.

 Private members are only accessible by the class members.

 Protected members are only accessible by the class members and the members of a derived class.

Example:

Example 2:A Simple Class
#include <iostream>
class smallobj //define a class
}

private:
int somedata; //class data
public:
void setdata(int d) //member function to set data
}

somedata = d;
{

void showdata() //member function to display data
{ cout << “Data is “ << somedata << endl; }
;{

int main()
}

smallobj s1, s2; //define two objects of class
smallobj
s1.setdata(1066); //call member function to set
data
s2.setdata(1776);
s1.showdata(); //call member function to display
data
s2.showdata();
return 0;
}

Class Constructors and Destructors:
A class constructor is a function that is executed automatically whenever a new instance of a

given class is declared.

The main purpose of a class constructor is to perform any initializations related to the class

instances via passing of some parameter values as initial values and allocate proper memory

locations for that object.

Note1: A class constructor must have the same name as that of the associated class.

Note2: A class constructor has not return type not even void.

Note3: A class constructor can be overloaded.

Example:
Write an oop program to
represent a rectangle
constructor.

Destructor
Just as a constructor is used to initialize an object when it is created, a destructor is used to

clean up the object just before it is destroyed. A destructor always has the same name as the

class itself, but is preceded with a ~ symbol. Unlike constructors, a class may have at most

one destructor. A destructor never takes any arguments and has no explicit return type.

Destructors are generally useful for classes which have pointer data members which point to

memory blocks allocated by the class itself. In such cases it is important to release member-

allocated memory before the object is destroyed. A destructor can do just that.

Example:
Write an oop program to represent a simple destructor.

Friend function
Occasionally we may need to grant a function access to the nonpublic members of a class. Such an access is

obtained by declaring the function a friend of the class.

Example:

Write an oop program to find

the summation of point using

friend function.

Example:
Write an oop program

to represent a friend

function .

Example:

output
i am in set code

i am in set code

i am in showcount

count : 2

i am in set code

i am in showcount

count : 3

i am in show code

object number1

i am in show code

object number2

i am in show code

object number3

Static Members

Example:
Write an oop

program to

represent a static

member.

Example :
Write a simple program to

represent array of class object

point .

Arrays of Objects

Inheritance
Inheritance is probably the most powerful feature of object-oriented programming, after classes themselves. Inheritance is

the process of creating new classes, called derived classes, from existing or base classes. The derived class inherits all

the capabilities of the base class but can add embellishments and refinements of its own. The base class is unchanged by

this process. The inheritance relationship is shown in the Figure

Inheritance and Accessibility

1. single inheritance

2.Multilevel inheritance

3.Hierarchical inheritance

4.Multiple inheritance

5.Hybird inheritance

forms of inheritance

Example:

